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This is the first of several papers dealing with the application of statistical thermo- 
dynamic methodology to the solution of coding and communication theory problems. 
Emphasis is placed on the various "ensemble techniques" of statistical mechanics, 
the words or "samples" of a message taking the place of molecules in the prototype 
physical system. Analogs of temperature, internal energy, pressure, chemical potential, 
volume, entropy, etc., are developed. The isomorphism with thermodynamics is com- 
plete and these quantities transform (for example, by partial differentiation) in exactly 
the same way as the prototype physical quantities. The methods are nicely applicable 
to coding cases involving sources with memory, in which case, correlation can be 
discussed in terms of analog "coupling energies" between signals or words so that the 
store of "many-body-problem" techniques can be used. In addition, the manipulative 
freedom stemming from the possibility of choosing from a multiplicity of ensembles 
constrained by "intensive" parameters proves a distinct advantage. A concrete example 
dealing with the choice of a compact code for a nonextended source with memory is 
presented. The compact code is derived, and some discussion is given concerning the 
breadth of its power spectrum. In a following paper, its autocorrelation function 
within the framework of "pulse code modulation" is derived and transformed by Wiener 
theory so that the power spectrum is directly exhibited (along with the spectra for 
several other cases). 
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1. I N T R O D U C T I O N  

In a recent paper, m the applicability of thermodynamic ideas to coding theory was 
explored, The paper was, however, largely didactic and confined to the simplest 
systems, e.g., discrete sources, without memory, coupled to noiseless channels. 
Information theory analogs of various thermodynamic quantities were identified, 
including information temperature, information pressure and volume, free energy, and 
chemical potential. Of course, the well-established information entropy was also 
discussed. 

As a simple illustration of the application of such techniques, transformations 
among these quantities were generated using (as in real thermodynamics) the methods 
of partial differentiation. 

The use of memoryless source led to analog situations which where the counter- 
parts of "weakly coupled" physical systems, like ideal gases. The partition functions 
which appeared naturally were therefore analogs of partition functions for molecules 
rather than for whole thermodynamic systems. As such, the formalism was limited in 
scope. 

In the present paper, we wish to generalize the method, making it applicable to 
situations involving memory and therefore to the analogs of strongly coupled physical 
systems. Furthermore, in a paper to follow, we shall apply the method to a realistic 
problem involving the achievement of compact, reliable communication requiring 
minimum bandwidth and power. This problem is described in the present paper 
although its detailed analysis is left for later. 

Of course, we cannot expect to exceed the ideal reliable communication rate 
specified by the famous channel coding theorem (~ 

I = o~Tlog~[1 Jr (P/N)] (1) 

where 1 is the maximum information in bits which can be transmitted in time Tthrough 
a channel of bandwidth m, having average signal and noise powers P and N, respec- 
tively. In general, the greatest utility of the statistical thermodynamic approach will 
not lie in the establishment of general theorems such as Eq. (1) which define what 
can and cannot be done, but rather in the discovery of specific means for achieving the 
maximum performance allowed by such theorems. Thus, in the example to be analyzed 
in the following paper, specific codes are devised, aimed at achieving the communi- 
cation rate permitted by Eq. (1). 

Several final introductory notes: In the statistical thermodynamic approach, a 
variety of "ensembles" emerge in a natural manner just as in physical statistical 
mechanics. (3~ Often, it is more convenient for mathematical manipulation to work in 
one ensemble rather than another. The chemist and physicist have "cultural" 
traditions which arm them with faith in such conceptual indeterminacy. Not the least 
of this faith is rooted in the fact that in those ensembles constrained by "intensive" 
parameters (temperature, pressure, chemical potential, etc.), the parameters admit 
of direct measurement and therefore possess physical meanings independent of the 
mathematical method itself. In information theory, it is somewhat more difficult to 
invest them with an equivalent measure of reality. Nevertheless, they are useful. 
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To the mathematician who may have a taste for rigor, attention should be called 
to the fact that the discussion which follows is more discursive than rigorous. This is 
because the formalism is indeed completely isomorphic with that of physical statistical 
mechanics, and the necessary limit theorems have already been carefully proved 
within that body of knowledge (2~ so that there is no need to repeat them here. The 
proofs are, however, somewhat different (and perhaps less clean-cut) than those 
given in standard information theory. Nevertheless, they are quite parallel, for example, 
to manipulations via the "Chebyshev inequality" or the "weak law of large numbers." 

2. E L I M I N A T I O N ,  W I T H O U T  I N C R E A S E  OF B A N D W I D T H ,  
OF  R E D U N D A N C Y  I N  PULSE C O D E  M O D U L A T I O N  

In order to have a concrete case in mind as we develop the formalism, consider 
the following problem. A continuous signal is sampled, (a) say at time intervals of 
1/2o), where m is the bandwith, and the samples are converted into binary numbers 
for transmission by pulse code modulation (PCM) (5~ over a noisy channel. In order 
to combat noise, check digits (6~ may be added to each binary number; and to gain a 
measure of compactness in advance of binary coding, some procedure such as 
Huffman (7~ or Fano (s~ coding may be employed. As a final generalization, the same 
procedure may be used for the transmission of discrete as well as continuous messages. 
For example, the binary numbers, instead of representing samples of a continuous 
message, may correspond to the letters of the alphabet which appear in the sequence 
of  some text being transmitted. In any event, the pulses are reconstituted into the 
original signal at the receiver end of the system. 

The transmitted message then consists of a sequence of zeros and ones. This 
sequence will have a set of statistics generated by the constraints in the original 
message, those implicit in Huffman or Fano coding, and in the method of assigning 
check digits. The chance that a given digit will be zero or one depends, in some way, 
on the preceding digits. This correlation amounts to a redundancy which can still be 
squeezed out of the transmitted message. Even in the absence of correlation there may 
be redundancy implicit in unequal frequencies of appearance of zeros and ones. The 
statistics of the message can of course be determined by a suitable investigation. 

Usually in PCM the pulses representing zeros and ones are of equal duration. 
By assigning different transmission times to different pulses, depending upon the 
statistics, it is possible to increase the rate of transmission. Of course, this is possible 
by merely shortening the duration of each pulse in scale, but for this, one pays the 
price of greater bandwith, a fact already evident in Eq. (1). The real question is the 
following: Can one, by choosing pulse transmission times of various magnitudes, 
decrease the mean transmission time without simultaneously increasing bandwidth? 

This is the problem to which this and the following paper are addressed. In the 
present paper, however, we concentrate on developing methods for choosing pulse 
transmission times. In the succeeding paper, we compute autocorrelation functions 19) 
as they depend on message statistics and assigned pulse transmission times; and then 
by Fourier transformation derive the exact power spectrum (1~ of the message and 
examine it for bandwith effects. 
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3. C O M P A C T  C O D I N G  A N D  M A T C H I N G  

It is in the choice of pulse transmission times that the statistical thermodynamic 
methodology finds application. In the interest of generality, however, we will develop 
the formalism without specifically identifying the kinds of messages involved. That is, 
they may consist of pulses representing zeros and ones, a more extensive set of digits, 
or, even, of continuous waveforms. It is only necessary that certain of their statistical 
features (discussed below) be known. 

We begin the investigation by the consideration of a very long (actually infinite) 
message. This is generated by a particular source operating under certain constraints; 
for example, under the constraints of grammar, type of language, etc. The message is 
itself divided into very long submessages. Hereafter, we refer to the total message as 
the "supermessage." The submessages are emitted by the source with different pro- 
babilities. Thus, the nth submessage will be emitted with probability Pn .  The sub- 
messages are sufficiently long so that there is a very large number of them and, further- 
more, so that they are substantially uncorrelated even though individual words in the 
message may be strongly so. The observant reader will recognize that in the usual 
language of information theory the submessages are "words" of a high-order "exten- 
sion" of the source, m) 

We now consider a "code" or "channel ''z whose "vocabulary" consists of the 
submessages emitted by the source. The constraints imposed on the supermessages 
which the code can "compose," aside from those of vocabulary, are not defined by 
language and therefore not by a set of probabilities Pn .  Instead, they are represented 
by the specification, through the coding procedure, of the transmission time T , ,  for 
the ntb message. In addition, we may demand that the supermessage be fitted into a 
total time Y .  

Under these conditions, the "typical" supermessage composed by the code will 
contain the nth submessage N,*  times, on the average. Since there are Jg  submessages, 
the frequency, or probability, of nth submessage in a code supermessage is 

P~* = N,* / J{  (2) 

There will of course be individual supermessages in which the frequency departs from 
the mean typified by P,* ,  but these will be "fluctuations" of very low probability. 
In fact, as is well known, a2) when ~/~ is large, messages characterized by the sub- 
message distribution Am* have not only the average distribution but also the most 
probable one ! 

If  the P~ of the source are different from the P , *  defined by the code, then the 
source will have to work with a set of "fluctuated" supermessages of the code, i.e., 
with a much smaller fraction of the messages available in the code. Obviously, source 
and code will be very poorly matched. 

Matching, however, may be achieved by changing the "spectrum" of transmission 
times T~ ; that is, by changing the code so that Pn* ~ P~ �9 

In homely terms, the source may be viewed as an "intelligence" composing 

2 We shall use the words "code" and "channel" interchangeably. 



Solution of Information Theory Problems 195 

messages out of a given vocabulary and under the constraints of language. In contrast, 
the code may be thought of as an "idiot" using the same vocabulary but working 
under another set of constraints, e.g., an assigned spectrum of transmission times and 
fixed 3- a n d / d .  The question of matching is merely that of forcing the idiot operating 
under its own constraints to compose, on the average, the same messages as 
the intelligence operating under another set of constraints. 

For  our purpose, the aspect of matching of primary importance lies in the com- 
pactness (relative to the source) of the matched code. To understand this, adopt the 
point of view that we match a source to a code rather than the reverse. In other words, 
we are given a spectrum of transmission times plus 3-  and ~ .  Then, we define classes 
of supermessages, each identified with a particular set of N , .  That class which 
contains the largest number of messages goes with N,r~*. Suppose this number of 
messages is D*. The information I* gained upon the receipt of one such message is 
measured by the logarithm of the number of alternatives, a~ Thus, we have 

I* = • in D* = log2 D* (3) 

where 

~: = log2 e (4) 

scales the information so that it is measured in bits even though we use natural 
logarithms. Since a supermessage requires time J -  for transmission, I* is the informa- 
tion transmitted in that time. 

Of the information distribution among the various classes of message and trans- 
mitted in time Y', that in the class defined by N,*  is the greatest. In passing, it is worth 
noting that if the total number of messages distributed in all the remaining classes is 
denoted by g?', then the maximum information which can be transmitted in time Y 
by the channel is 

/max = tr In(D* q- D') ~ I* (5) 

/max is negligibly different from I*. This is a common result a~ and has its root in 
the size of the numbers g?* and D together with the nature of the logarithm. Note, 
however, that it is still possible for the following to hold: 

In ~2' >~ In D* (6) 

so that an appreciable number of channel messages will, on the average, remain 
unused by a source with probabilities P ,*  = N~*/Jg .  

Thus, given a fixed transmission time Y ,  the maximum amount of information 
which can be sent through the channel in that time is given essentially by I*. We 
achieve this maximum rate by using, in conjunction with the channel, a source whose 
probabilities of message emission are P,*.  

Next, we invert our point of view. Now assume a fixed source with given 
probabilities P,~ which emits supermessages d{ submessages long. What code or 
channel, defined by a spectrum of  transmission times T , ,  allows these supermessages 
to be transmitted in the smallest possible time ? The probabilities P~ determine the 
average number of distinct supermessages which the source may construct out of 
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submessages, and therefore the average information in a supermessage. We are thus 
faced with the following problem: Given afixed amount of information, what is the 
code which can transmit it in the shortest time ? 

In the previous situation, we were given a code defined by a spectrum of trans- 
mission times and afixed time Y in which to transmit supermessages constructed out 
of J {  submessages. In that case, the Tn were fixed and not the information. We sought 
to identify the source which would allow the transmission in the time J- ,  via this 
code, of the maximum information. This proved to be the one with submessage 
probabilities P~*; in other words, the source which matched the code. This source 
maximized the information rate I at 

I = I*/J- (7) 

In the present situation where we are given I* and asked to minimize J- ,  it is clear 
that we are also maximizing L Thus, the channel whose code is compact is again 
determined by matching--this time, matching of code to source l 

The problem in its last form is the one of primary interest. Nevertheless, it is 
worth noting that, under matching, the following three things are simultaneously 
accomplished: (1) The typical message in the "idiot" channel is the same as the 
typical message in the "intelligence" source. (2) The largest amount of information 
is transmitted in a fixed time. (3) The shortest time is required for the transmission 
of a fixed amount of information. 

The discussion in this section has been qualitative. In the next section, we adopt 
a quantitative approach and introduce the statistical thermodynamic methodology. 

4. C O M P A C T  C O D I N G  A N D  T H E R M O D Y N A M I C  E Q U I L I B R I U M  

We now approach the quantitative aspects of the matching problem from the 
point of view of point (2) discussed above; namely, choosing a set of submessage 
probabilities P ,  for a source so that the greatest amount of information is transmitted 
in time 3" over a channel with transmission times Zn �9 This means that the Pn must 
correspond to the frequency of appearance of the nth submessage in the average, or 
"typical," supermessage generated by the channel. 

The class of supermessages in which there are Nn submessages of type n consists of 

~Q = ~ '  !/I-In N,!  (8) 

supermessages in all. These are subject to the constraints 

Z U,  = d{ (9) 

Z N , T ,  = 3- (10) 
n 

The set of N~ which maximize ~ subject to Eqs. (9) and (10) will be those of the 
"typical" message, and can be obtained in a standard manner by the method of 
undetermined multipliers. The result is 

N,~* = e-r"/K*/Q(r) (11) 
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where 

Q(T) = Z e-T'/~ (12) 

Here, • is the quantity specified by Eq. (4) and T is an undetermined multiplier. (The 
multiplier of course is Kr; we write it in this form in anticipation of  later use.) The 
probabilities going with the typical set are then 

P,* = N~*/JI = e-T#~'/Q(~ ") (13) 

Matching requires a source with probabilities 

Pn = e ,*  (14) 

Until now, we have not advanced a method for defining a submessage. Any one 
of a number of definite criteria may be used. For  example, the source may generate 
messages composed of discrete words. In this case, we might define each message to 
consist of  a sequence ofaf ixed number, W, of words. The words in the message may, 
however, be highly correlated. Thus, the probability of emission of a given word may 
depend heavily on the words emitted previously. On the other hand, W is large 
enough so that the submessages themselves remain essentially uncorrelated. 

In form, Eqs. (11)-(13) resemble those belonging to the canonical ensemble (15) 
employed in treatment of thermodynamic systems. In that case, P~* would be the 
probability that the system, immersed in a thermostat of temperature 7, is in a quan- 
tum state of energy T~. Q(~-) resembles the canonical ensemble partition function. 

That ~- is indeed the analog of a temperature (we call it the information tempera- 
ture) is demonstrated by the following argument. The mean time of transmission of  
a submessage is 

T = Z P~Tn (15) 
n 

where we have dropped the asterisk on the P,~, understanding that it still signifies 
the P~* given by Eq. (13), Since the transmission times T~ are the analogs of physical 
system energy levels, T is the analog of the thermodynamic internal energy. Notice 
that Eq. (14) can be satisfied, not only by finding a source with the proper P~ to 
match a channel with fixed spectrum T~ and therefore fixed P~*, but also by adjusting 
the various T~ so that the P~* are varied to match a source with fixed P , .  We can 
make the T~ depend upon one or several parameters Xi,  etc., so that 

dT, = ~ (sr/~xi) dXi (16) 
i 

so that matching can be achieved by varying the Xi �9 In the simplest case, there will 
be only one parameter X. For simplicity, we consider such a case. Then, 

dr : E r .  ePo + 2 P. dro = 2 de.  - ( -  2 e .  a x  (17) 
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If Tn from Eq. (13) is substituted into the first sum on the right of Eq. (17), we 
get 

where we have used 

Z d P ,  = 0 (19) 
n 

Now, the term in the first curly brackets of Eq. (18) is the information per submessage 
when the messages are emitted with differing probabilities P,~, defined (16) by standard 
information theory. It is also S, the information entropy per submessage (and also 
has the correct form for a physical entropy of a thermodynamic system). Thus, 

1 / J /  = S = --~c • P ,  In P ,  (20) 
n 

I f  we define 

7r = - -  ~ P ,  ~ T n / ~ X  (21) 
~t 

as the information pressure of a submessage, Eq. (18) may be written in the form 

d T  --=- ~" dS  - -  7r d X  (22) 

When this equation is compared with the thermodynamic equation, r representing 
the combined first and second laws, 

d U  = T '  dS  - -  p d V  (23) 

in which U is the internal energy, T' the temperature, S the entropy, p the pressure, 
and V the volume, the analog between ~- and T' (as well as the other analog relation- 
ships) is immediately evident. 

Notice that 

r = - - ( a T / a X ) s  (24) 

so that the information pressure measures the resistance to compression, at fixed 
information content S per submessage, of the average submessage transmission time. 
7r therefore has an intuitively satisfying meaning. 

Equations (13) and (14) are the matching conditions and are also the analogs of 
relations which would hold at thermodynamic equilibrium in a physical system. 
Matching may therefore be viewed in the following way. The source is like a thermostat  

at temperature ~- in which the channel is immersed. Matching occurs when the channel 
is "immersed" in this "thermostat" and the channel spectrum T, is altered, possibly 
by variation of the information volume X ,  so that the channel comes into "thermal" 
equilibrium with the source. Note that ~- also measures the randomness of the source 
since, as ~- -+ ~ ,  the various Pn become equal. 

Transformations among the thermodynamic analog variables T, ~-, S, 7r, X, etc., 
may be generated by partial differentiation just as in the case of thermodynamics. This 
process was illustrated for the simple case of a source without memory in Ref. 1. 
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It is easy to demonstrate the following relations: 

T = ~ PnTn = KrZ(a In Q/ar)x  
n 

S = - -K  ~,, Pn In Pn = K a ( r  I n  Q)x/Or 
n 

= T - - r S =  - K r l n Q  

rr = -- ~ Pn(aTn/OX) = Kr(O In Q/aX) ,  
n 

(25) 

(26) 

(27) 

(28) 

Here ~ is the information Helmholtz free energy. Thus, as in thermodynamics, the 
evaluation of the partition function permits the immediate specification of the thermo- 
dynamic analog quantities. 

A useful interpretation of r is the following. If  we fix the average message length 
T, then r can be determined from Eq. (25). Thus, r is in some way related to the 
average message length. If  we define 

On = T, j r  (29) 

Pn = e-~ 02 .... ) (30) 

Eq. (13) becomes 

so that the Pn depend only upon the reduced transmission times 0n �9 The information 
per message therefore depends solely on these reduced times, and can be maintained 
constant if all the Tn are varied in proportion to r. Thus, r is a common scale factor, 
determining the average message length. At fixed information per message, one can 
achieve arbitrary speed of transmission (other factors such as bandwith being ignored) 
by merely reducing r so that T is diminished in the same proportion. Adjustment of 
scale (through r) is therefore not really a problem in information theory. The real 
problem consists in choosing the code which allows the transmission of the largest 
amount of information at fixed T and P~,  i.e., in adjusting the relative values of 
T~ (i.e., 0n). Equation (30) accomplishes this. 

Alternatively, Eq. (30), through (25), determines the smallest T for a code which 
can be matched to a source at temperature r having message probabilities P~.  

5. D I S C R E T E  S O U R C E  W I T H O U T  M E M O R Y  

In this section, we specialize the relations of the previous section to the case 
treated in Ref. 1, namely, that of a source, without memory, emitting discrete words, 
the ith word having probability of emission p~. If  each message contains W words and 
we assign a spectrum of transmission times t~ to the words, then a message containing 
n~ words of type i will have a transmission time 

T. = ~ n,h (31) 
i 
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Since the source has no memory, all sets of n~ are allowable subject only to the con- 
dition 

E ni = W (32) 
i 

and furthermore, all permutations of words are permitted, so 

e~ = I-I PT' (33) 
i 

and 
Q = qrV (34) 

where 
q = ~ e -~'/K~ (35) 

i 

where q is the partition function for a word. Using Eq. (31) in (13), noting Eq. (32), 
and eliminating P~ between the result and Eq. (33) gives 

H p*~' = H (e-h/K'/q) ~i (36) 
l i 

from which it is easily seen that 

p~* ~- e-t'/~'/q(r) (37) 

For matching, we adjust h so that 

Pi* = Pi (38) 

This involves solving the set of simultaneous equations, one for each i, represented 
by Eq. (37) with p~* set equal to Pi.  

Note some further features of the analog. A word is like a molecule. All words 
are simply the same molecule in different time states (the analog of quantum states). 
When memory and correlation are not involved, the message is something like an 
ideal gas. We shall have more to say about this later. 

6. A N O T H E R  ENSEMBLE 

When the source has memory, one cannot achieve the most compact code by 
merely adjusting word transmission times according to Eq. (37). One can adjust 
message times in accordance with Eq. (13), but then one deals with an essentially 
infinite set of messages and a correspondingly large set of times. This of course is a 
usual problem in coding high-order extensions of a source. It is in just this case, when 
correlation is involved, that the statistical thermodynamic methodology is useful for 
the prescription of those word transmission times that lead to the most compact 
code, for it is here where the rich fund of techniques developed in connection with the 
physical "many-body problem" can be applied. We will solve an example of this 
kind later. In the present section, we discuss another ensemble. 
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Consider a supermessage confined to a transmission time Y as in the previous 
case but f rom which we lift the constraint that it contain a fixed number of  sub- 
messages Jg.  Since all of the messages possible in the presence of that constraint are 
still possible, together with additional ones which can now be fitted into J ' ,  in view of 
the relaxing of the requirement of  ~ ,  the code which can be adapted to this situation 
contains an equal or greater number of  messages and should be able to transmit as 
much or more information in the same time interval. Alternatively, it can transmit 
the same information in a shorter time and should be more compact. In fact, it should 
be the most compact code matched to the given source since there are no further 
constraints which can be removed. (J" does not really represent a constraint since it 
can be varied at will, and, in any event, we think of it as going to infinity.) 

In practice, how can we remove the restriction of fixed ._/r in 3" ? One method is 
the following. Assume that the source, in emitting the message, breaks down inter- 
mittently in a perfectly random manner. Each failure defines the terminus of a sub- 
message. Thus, if  the message is composed of discrete words, the submessages will 
contain varying numbers of  words; and furthermore, .~{ will be indeterminate. The 
number of  submessages going with a given set of  N~ is still 

where Z ,  N~ represents the variable ~ .  Now, however, the only constraint is 

2 T~N~ = ~-- (40) 

Maximizing ~ relative to this constraint gives 

Pn* = N./Jg = e -T"/K~ (41) 

Comparison of Eq. (41) with (13) shows that we are here dealing with a case in which 
~- has a value ~-~ such that 

Q(~'c) = 1 (42) 

I f  the source probabilities are Pn ,  then matching is once more achieved by 
adjusting the T.  such that P,** = P~ ; that is, 

T~ = --K~-c In P~ (43) 

The mean submessage time is now 

T~ = 2 P~T~ = --Kr~ 2 P~ In P~ = r~S (44) 
n 

and, as indicated above, this must be the shortest mean time possible at given -r~. I f  
we deal with block coding, as) message lengths are measured not by T~ but by L , ,  the 
number (an integer) of  digits in the nth message. Had we proceeded this way, Eq. (41) 
would have been replaced by 

P~* = exp(--L~/K~-~') (45) 
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with ~'~' now dimensionless. Equation (44) would become 

L~ = r~'S (46) 

The L~ in Eq. (45), when the P~* are fixed, still depend on the choice of ~-~'. Alter- 
natively, Eq. (42), now written as 

Z exp(--L./m-~') = 1 (47) 

does not determine re' until the L~ are fixed. The capacity C of the code is given by the 
information transmitted per digit, 

C =  SILo = 1/z~' (48) 

Obviously, the most compact code is the one with the largest capacity. Clearly, the 
maximum information per digit is achieved when we have absolutely no prein- 
formation concerning which digit is likely to appear. In this case, if there are r digits, 
the information per digit would be ~: In r, so that the value of r e' for the most compact 
code should be given by 

1/z~' = Cmax = ~c In r or 1/r = exp(--1/~c~-~') (49) 

Choosing this value of re' in Eq. (47), it becomes 

r -L" ~ 1 (50) 

which is the "equality" part of the famous McMillan inequality, tl~ Introduction of 
Eq. (49) into (46) gives, for the most compact block code, 

L~ ~ S/(K In r) = S/log2 r (51) 

which is Shannon's first theorem/2~ or the source coding theorem. 
The special value of ~-~' prescribed by Eq. (49) arises strictly in the case of block 

coding and is connected with the fact that our "scale" is constrained by the integer 
requirements on the various L~. No such unique determination of ~'~ is available for 
the continuous case to which Eq. (44) applies. Here, as mentioned earlier, ~- and ~-, are 
simply scale factors which, as will be seen later, cancel out of most problems. 

In the block coding case, maximally compact codes can only be achieved by 
coding very high-order extensions of the source. In the continuous case without the 
integer restriction, word transmission times ti can be chosen so that the coding of 
low-order extensions achieves compactness. 

Although Q(r) has the outward form of an analog of the partition function in 
the canonical ensemble, it is not the strict analog if words are considered the analogs 
of molecules, unless the number of words in each submessage is fixed, say at W. 
Further insight into this analog question can be obtained by considering a super- 
message composed of J /submessages  and ~ words confined to a time interval 3-. 
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Here again, we achieve this condition in practice by letting the source fail inter- 
mittently in a random manner. In addition, we consider only those supermessages 
which happen, in time 3", to contain ~ words. 

The constraints are now 

~, N .  = d/Z (52) 
n 

~, T,~N,~ = Y (53) 
qT, 

N~W~ = ~ ( 5 4 )  

where 
supermessage are obtained by maximizing 

W~ is the number of words in the nth submessage. The N.  for the typical 

59 = ~ ! / I - L  N.! (55) 

with the result 

P.* = N.IJ{ = e"W"/~" e-r"/'~'/Z 

where/x is another undetermined multiplier and 

Z : s e~tr~/K're -T~/'~T 

(56) 

(57) 

If  we gather all messages having W words together, the sum in Eq. (57) may be 
expressed more compactly as 

Z = ~ e"w/K'Q(T, W, X) (58) 
W 

where Q(T, W, X) is indeed the canonical ensemble analog partition function for a 
submessage with a fixed number W of words. Z will be recognized, immediately, as 
the analog grand ensemble partition function for an "open" submessage constrained 
to a "chemical potential"/x. (2za,b) 

It may be shown (22) in a straightforward manner that 

T = K'r2(a In Z/ar).,x 

(W> = Kr(a in Z/al~)~.x 

S = K{t(-r in Z)/8-r}.,x 

7rX = K~" In Z 

(59) 

(60) 

(61) 

(62) 

Here, ( W )  is the average word content of a submessage, just as T is the average 
transmission time. The "intensive" parameters ~- and/~ are constrained, while T and 
W are allowed to fluctuate. Although these parameters are not directly measurable 
as in the case of physical systems, they are nevertheless useful concepts for the purpose 
of  mathematical manipulation. For  example, it often is easier to evaluate a sum in 
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one ensemble where it may contain an infinite number of terms than in another where 
it may be finite. To give a simple illustration, we derive the "equation of state" for a 
submessage generated by a source without memory. 

Introducing Eq. (34) into (58) gives 

Z = ~ {qe"/K'} W = qe"/K'/(1 - -  qe "/~') (63) 

Substitution of this result into Eq. (60) yields 

1 - -  1 / ( W )  = q e ~ / ~  (64) 

and substitution back into Eq. (63) gives 

Z =  ( W ) - -  1 (65) 

so that, according to Eq. (62), 

~rX = Kz l n { ( W ) -  t} = m-In(W)  (66) 

where unity can be ignored in comparison with (W) .  
Since rr measures the resistance of a submessage to compression at fixed informa- 

tion content, we see that this resistance rises less than linearly with word content, 
i.e., the message becomes more compressible with increased W. 

Equations (56) and (57) reduce to Eqs. (13) and (12), respectively, if/~ is set equal 
to zero. Thus, we see that Q(r) derived originally is in fact a grand partition function 
for a grand ensemble with information chemical potential equal to zero. In order  for 
it to correspond to the canonical ensemble, it would be necessary to fix W rather than 
allow it to fluctuate. 

Since in deriving Eqs. (12) and (13) the constraint, Eq. (54), was not used, we 
see that t~ = 0 corresponds to the case in which no condition is placed on the total 
number of words permitted in the supermessage. 

The most compact code is still achieved when Q(~') = 1. This corresponds to the 
case in which the constraints, Eq. (52), as well as Eq. (54), are absent. 

7. S O U R C E  W I T H  C O R R E L A T I O N  

In this section, we return to the problem of pulse code modulation (PCM) 
described in Section 2 and apply the methodology of the preceding text to its solution. 
We treat a very simple example in order to illustrate the method, but more complex 
ones can be handled with no essential increase in difficulty. To refresh the reader's 
memory, we are given a source which emits messages consisting of sequences of 
zeros and ones. This source is in fact some "sampled," possibly continuous, signal, 
the samples having been coded as binary numbers, with check digits if necessary. The 
statistics of this source are known and, for simplicity, we assume that correlation, 
or memory, extends only to the previous digit. In the present example, the term 
"word," as used in the preceding text, is taken to mean "digit." 



Solution of Information Theory Problems 205 

We now define the following: Pal is the probability that a one will be emitted, 
given that the previous digit was a one;Po0 is the probability that a zero will be emitted, 
given that the previous digit was a zero; Poa is the probability that a one will be 
emitted, given that the previous digit was a zero; Pao is the probability that a zero will 
be emitted, given that the previous digit was a one. In addition, we define Pa as the 
a priori probability that a one is emitted, Po as the a priori probability that a zero is 
emitted, and P t l ,  P0o, Pol,  P10 as the respective probabilities that the subscript pairs 
are observed. 

Clearly, the following relations hold: 

P1 = Ptl + Pot, Po = Plo + Poo 

P n  = P t P n ,  1'oo = PoPoo (67) 

Pol = eoPot,  1"1o = PlPlo 

The problem is to choose word transmission times tt~, too, tot, and h0 which, on the 
basis of the above statistics, lead to the shortest mean time of transmission per word. 
Because of the correlation, we cannot simply use a variant of Eq. (37) [with q(~-) = 1] 
to get something like 

q0 = --x~-lnpt0,  etc. (68) 

Furthermore, when we discover the proper values for ta~, too, t0~, and q0, we must 
investigate whether we have to pay for their use with increased bandwidth. 

The problem is simplified considerably by inversion; that is, we assume a code 
or channel in which f i t ,  too, t0~, and h0 are specified, and then find a source with 
word probabilities to match it. Thus, if nat, n00, not, and nt0 represent the numbers 
of  11, 00, 01, and 10 pairs in the message, these will be allowed to "fluctuate" along 
with the numbers of ones and zeros while the "intensive" paremeters ~- and/x are held 
fixed. In this way, no restrictions are placed either on the n's or on the sums in the 
relevant partition functions, which can then be evaluated in closed form. 

It is then possible to calculate the average values {naa>, etc., at fixed ~- and tz. We 
thus arrive at relations between the (n>'s and t's which can be inverted to give the 
t 's as functions of (n>'s. The (n>'s are then chosen to be those of the source and the 
corresponding t's will, from what has been said in previous sections, be those yielding 
the compact code for given ~- and/z. To get the most compact code, in accordance 
with Section 7,/~ is set equal to zero and ~- is determined by the requirement Eq. (42). 

Thus, even though ~ and ~- are not directly measurable, their introduction removes 
certain bothersome restrictions from the process of mathematical manipulation, and 
so they play important roles exhibiting some advantages of the statistical thermo- 
dynamic methodology. 

The most convenient ensemble for the present problem is the grand ensemble 
introduced in Section 7. If  the nth submessage contains n ~ ,  n0o, n0~, and nx0 of the 
respective pairs, then 

Tn = nllttt 4- nootoo 4- nottoz + nz0tl0 (69) 

Note that Tn can vary with the n's. 
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In the same submessage, the number of words will be 

W,~ = n~l + noo + no1 + nlo 

Using Eqs. (69) and (70) in (57) gives 

Z = 2 (~Sll)nZl ( r  S00)n~176 (~}S01)n~ (~]SlO)q'bxo 
(all possibilities) 

where 

(7o) 

(71) 

( W )  = Kr ~ In Z/~I~ = 7 ~ In Z/~y 

P*~ = (n l ) / (W)  (76) 

and the remaining similar probabilities if Z(y, sly, Soo, s0~, S~o) can be evaluated. 
The problem in its present form is a variant of the Ising model problem for a 

ferromagnet, (23~ which has received much attention in physics. Accordingly, for the 
evaluation of Z we may use one of the several methods developed for that case. A 
convenient procedure is the so-called "matrix method. ''(24~ This is applied most 
easily to our case if the form of Z, given by Eq. (58), is used, in which case we must 
first evaluate Q(T, W, X). 

(75) 

Thus, we may calculate 

3] ~ e ~ /~  
(72) 

sij = e -~'/'~, i = 0,1, j = 0,1 

The sum is over all message possibilities. This means over all pair numbers ni~., the 
pairs appearing in all possible permutations. The "all possibilities" means every 
conceivable message of every conceivable length! This illustrates the great freedom 
from restriction gained through the introduction of 7 and/z. 

We already know [see Eq. (56)] that the terms in the sum (71), when normalized 
by 1/Z, measure the probability of the message with the specified n~j. Thus, @11), 
for example, is given by 

n l l=  l /Z Z n~(ySl~) "11 (y~0o) "~176 (rSol) "~ (rSlo) "10 
(all possibilities) 

= sal{0 In Z/~Sll}Y,800,801.810 (73) 

Similar relations hold for the other n's, so that 

(noo) = Soo ~ In Z/~soo 

(no~) = Soz ~ In Z/~Sol (74) 

(nlo> = Slo ~ In Z ~Slo 

where for simplicity we have omitted the subscripted variables held constant in the 
partial differentiations. 

We already know [Eq. (60)] that 
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The messages of W words over which the sum in Q goes may be divided into two 
classes; those ending in one and zero, respectively. The part of the sum which includes 
only those ending in one will be denoted by Q[W) and the part over those ending in 
zero by Q~o W~. These quantities may be generated from the corresponding quantities 
for messages possessing W -- 1 words by the relations 

Q~W) = 3"lzQ~V/-1) -F- soxQ~ W-l) 
(77) 

Q~rV) = sloQ~W-1) 4_ sooQ~W-1) 

which are easily explained. For example, if we have Q~W-Z~ and add a one to all of  the 
messages to which it corresponds, we will first of all have messages of length W ending 
in one. The addition of a one to messages of length W -- 1, all ending in one, multi- 
plies, by a factor e-*n/K- = Szl, each term in partition function sum Q~W-~) which 
corresponds to those messages. Thus, the first term on the right of the first of Eqs. (77) 
is 3"~QlW-Z). The remainder of Eq. (77) is derived in the same way. Now, 

Q(T, W, X) = Q~W) + Q~W) (78) 

and it is easily shown (2~) that when W is large 

In Q = ln(Q~W) + Q~W)) = W l n  2t (79) 

where )t is the largest eigenvalue of the matrix of coefficients on the right of Eq. (77). 
Thus, for all practical purposes, we may write 

Q(T, W, X ) =  A w (80) 

The secular equation is 

(811 - -  ~) S01 I = 0 
Sxo (Soo - ;~) 

of which the largest root is 

= l(Sl l  -~- S00) -~- {I(3'11 "~ 3'00) 2 "~ 3'103'01 - -  3'113'00} 112 

According to Eq. (58), then, using Eq. (78), 

W=m 
z = ~ ( r a )  W = 7~/(1 - c a )  

W=l 

Using Eq. (75), 

( w )  = 7 ~ In z / e~ ,  = 1/(1 - ya )  

while from Eqs. (73) and (74) we obtain, as a typical relation, 

t _ sit ~2t 1 sij ~a < W ) - -  
(nij>- 1 -  ~?t A Osij )t ~sij 

where in the last member we have used Eq. (84). 

(81) 

(82) 

(83) 

(84) 

(85) 

822/3/2-8 
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Although (nij) and ( W )  depend individually on y, and therefore on/z,  we see 
that 

PimJ-  (rliJ) - -  S i j  ~ h  ( 8 6 )  
( W )  h ~s~j 

does not, so that it is not even necessary to set/~ = 0 before the proper P*  is deter- 
mined. Making use of Eq. (82), we get 

~A/~S1 i = 1 ,  {~ -r- i(slz Soo)[k(siz + Soo) ~ + SloSol - -  SnSoo] -1/2} (87) 

eV~Soo = {�89 - i ( s l l  - Soo)[}(sl~ + Soo) ~ + SloSo~ - sllSoo] -~/~) (88) 

1 1 (89) ~2t/~Sol = 2-S~o[~(sl~ - Soo) 2 + S~oSol - s~Soo] -~/2 

~/~$10  = �89 - -  S00) 2 -~- $10801 - -  $11S001-1/2 ( 9 0 )  

These relations, together with Eq. (82) inserted in Eq. (86), relate the s~j (and therefore 
hi) to the P~- = P* (under matching) of the source, and thus determine the compact 
code. 

To illustrate the process in greater detail, consider the simple case in which 

P l l  = Poo = o~ (91) 

and 

Since 

we have 

From Eqs. (67) and (94), 

and 

Symmetry now requires 

Poz = P~o = 3 (92) 

P l l + P o o + P o z + P z o =  1 

~ + 3 = ~  

(93) 

(94) 

Pz = Po ---- �89 (97) 

811 = S00 = S a ( 9 8 )  

Sol = Szo = sb (99) 

Introducing these equations into Eqs. (87)-(90) and the results into (86) with 

= 1 (100) 

in accordance with the combined requirements of Eqs. (42) and (80), yields 

cx ~- P n  = Poo = Sa/2 (101) 

3 = Pox = P~o = 4 / 2  (102) 

Pll == Poo ~ 2c~ (95) 

P01 = Pl0 = 2~ (96) 



Solution of Information Theory Problems 209 

Using Eq. (94) we find 

From Eq. (72), 

and therefore, 

sa = 2c~ (103) 

sb -- 1 -- 2~ (104) 

txl = t0o = - - x ~ - I n  sa 

1Ol ~-- tl0 = - - K T  In sb 

(105) 

(106) 

t l l / tol  = too~rio = (In 2~)/ln(1 -- 2a) (107) 

Thus, except for an arbitrary scale factor, all the times leading to a compact code are 
determined in terms of a, the parameter which determines the correlation. The 
compact mean transmission time per word is 

( t )  = 2t11{~ + [ln(1 --  2~)/ln 2a]} (108) 

where tlz is taken as the scale. 
According to Eq. (108), the value of a that gives the smallest mean time per word 

(aside from scale) is ~ = 0, for which the mean time is itself zero. This is perfectly 
consistent since ~ = 0 implies Pzz = Poo = 0, which can only be true for the single 
message of the type 

1010101010... (109) 

in which one and zero alternate. Since only one message is possible, we already know 
what it is; and zero transmission time is therefore required! 

8. C O N C L U D I N G  REMARKS 

Although, as shown in the last section, ( t )  can be made small by the proper 
choice of word transmission times, it is still necessary to determine how much, if 
any, increased bandwidth is required for the achievement of  this more rapid communi- 
cation. In order to examine this question in detail, it is necessary to calculate the 
power spectrum of a signal resembling Fig. 1, but adjusted for different pulse lengths. 

I I 

Fig. l .  Binary P C M  signal with pulses representing zeros and  ones of  equal length. 
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This is a separate and difficult problem which is approached most expeditiously by 
first computing the autocorrelation function and applying Wiener theory. ~9) This will 
be done in a subsequent paper. 

It should be noted that in the method of Section 7, tij is the analog of an inter- 
action or coupling energy in the Ising model. In fact, throughout the entire analog, 
time is the analog of energy. The problem treated in Section 7 contains nearest- 

neighbor interactions only. There is no increased difficulty in principle when longer- 
range interactions are involved, although there may be increased tedium. However, 
certain approximate methods have been developed in connection with the physical 
problem which could be used without alteration in the information theory case. In 
fact, one's whole intuition gained from acculturation with the physical problem 
should be transferable. 

Another difficulty, of course, is the acquisition of knowledge concerning the 
actual statistics of the message. Here also, experience with physical systems should 
prove useful. 
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